A clustering algorithm for multivariate longitudinal data
نویسندگان
چکیده
منابع مشابه
A Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data
The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...
متن کاملClustering for Multivariate Continuous and Discrete Longitudinal Data
Multiple outcomes, both continuous and discrete, are routinely gathered on subjects in longitudinal studies and during routine clinical follow-up in general. To motivate our work, we consider a longitudinal study on patients with primary biliary cirrhosis (PBC) with a continuous bilirubin level, a discrete platelet count and a dichotomous indication of blood vessel malformations as examples of ...
متن کاملAn improved opposition-based Crow Search Algorithm for Data Clustering
Data clustering is an ideal way of working with a huge amount of data and looking for a structure in the dataset. In other words, clustering is the classification of the same data; the similarity among the data in a cluster is maximum and the similarity among the data in the different clusters is minimal. The innovation of this paper is a clustering method based on the Crow Search Algorithm (CS...
متن کاملA pseudo-EM algorithm for clustering incomplete longitudinal data.
A method for clustering incomplete longitudinal data, and gene expression time course data in particular, is presented. Specifically, an existing method that utilizes mixtures of multivariate Gaussian distributions with modified Cholesky-decomposed covariance structure is extended to accommodate incomplete data. Parameter estimation is carried out in a fashion that is similar to an expectation-...
متن کاملA New Nonparametric Regression for Longitudinal Data
In many area of medical research, a relation analysis between one response variable and some explanatory variables is desirable. Regression is the most common tool in this situation. If we have some assumptions for such normality for response variable, we could use it. In this paper we propose a nonparametric regression that does not have normality assumption for response variable and we focus ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Biopharmaceutical Statistics
سال: 2015
ISSN: 1054-3406,1520-5711
DOI: 10.1080/10543406.2015.1052476